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Decoding tumour phenotype by noninvasive
imaging using a quantitative radiomics approach
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Human cancers exhibit strong phenotypic differences that can be visualized noninvasively by

medical imaging. Radiomics refers to the comprehensive quantification of tumour phenotypes

by applying a large number of quantitative image features. Here we present a radiomic

analysis of 440 features quantifying tumour image intensity, shape and texture, which are

extracted from computed tomography data of 1,019 patients with lung or head-and-neck

cancer. We find that a large number of radiomic features have prognostic power

in independent data sets of lung and head-and-neck cancer patients, many of which were

not identified as significant before. Radiogenomics analysis reveals that a prognostic

radiomic signature, capturing intratumour heterogeneity, is associated with underlying

gene-expression patterns. These data suggest that radiomics identifies a general prognostic

phenotype existing in both lung and head-and-neck cancer. This may have a clinical impact as

imaging is routinely used in clinical practice, providing an unprecedented opportunity

to improve decision-support in cancer treatment at low cost.
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M
edical imaging is one of the major factors that have
informed medical science and treatment. By assessing
the characteristics of human tissue noninvasively,

imaging is often used in clinical practice for oncologic diagnosis
and treatment guidance1–3. A key goal of imaging is ‘personalized
medicine’, where treatment is increasingly tailored on the basis of
specific characteristics of the patient and their disease4.

Much of the discussion of personalized medicine has focused
on molecular characterization using genomic and proteomic
technologies. However, as tumours are spatially and temporally
heterogeneous, these techniques are limited. They require
biopsies or invasive surgeries to extract and analyse what are
generally small portions of tumour tissue, which do not allow for
a complete characterization of the tumour. Imaging has great
potential to guide therapy because it can provide a more
comprehensive view of the entire tumour and it can be used on
an ongoing basis to monitor the development and progression of
the disease or its response to therapy. Further, imaging is
noninvasive and is already often repeated during treatment in
routine practice, on the contrary of genomics or proteomics,
which are still challenging to implement into clinical routine.

The most widely used imaging modality in oncology is X-ray
computed tomography (CT), which assesses tissue density.
Indeed, CT images of lung cancer tumours exhibit strong
contrast reflecting differences in the intensity of a tumour on
the image, intratumour texture and tumour shape (Fig. 1a).

However, in clinical practice, tumour response to therapy is only
measured using one- or two-dimensional descriptors of tumour
size (RECIST and WHO, respectively)5. Although a change in
tumour size can indicate response to therapy, it often does not
predict overall or progression free survival6,7. Although some
investigations have characterized the appearance of a tumour
on CT images, these characteristics are typically described
subjectively and qualitatively (‘moderate heterogeneity’, ‘highly
spiculated’, ‘large necrotic core’). However, recent advances in
image acquisition, standardization and image analysis allow for
objective and precise quantitative imaging descriptors that could
potentially be used as noninvasive prognostic or predictive
biomarkers.

Radiomics is an emerging field that converts imaging data into
a high dimensional mineable feature space using a large number
of automatically extracted data-characterization algorithms8,9.
We hypothesize that these imaging features capture distinct
phenotypic differences of tumours and may have prognostic
power and thus clinical significance across different diseases. Here
we assess the clinical relevance of 440 radiomic features, many of
which currently have no known clinical significance, in seven
independent cohorts consisting of 1,019 lung cancer and head-
and-neck cancer patients. Two data sets are used to assess
the stability of the features, four data sets to assess the prognostic
value of radiomic features on lung cancer patients and
head-and-neck cancer patients, and one data set for association
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Figure 1 | Extracting radiomics data from images. (a) Tumours are different. Example computed tomography (CT) images of lung cancer patients. CT

images with tumour contours left, three-dimensional visualizations right. Please note strong phenotypic differences that can be captured with routine CT

imaging, such as intratumour heterogeneity and tumour shape. (b) Strategy for extracting radiomics data from images. (I) Experienced physicians

contour the tumour areas on all CT slices. (II) Features are extracted from within the defined tumour contours on the CT images, quantifying tumour

intensity, shape, texture and wavelet texture. (III) For the analysis the radiomics features are compared with clinical data and gene-expression data.
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with gene-expression profiles of lung cancer patients (Fig. 2). Our
results reveal that radiomics data contain strong prognostic
information in both lung and head-and-neck cancer patients, and
are associated with the underlying gene-expression patterns.
These results suggest that radiomics decodes a general prognostic
phenotype existing in multiple cancer types. Radiomics can have
a large clinical impact, as imaging is used in routine practice
worldwide, providing a method that can quantify and monitor
phenotypic changes during treatment.

Results
Association of radiomic data with clinical data. To assess the
value of radiomic features to capture phenotypic differences of
tumours, we performed an integrated analysis assessing prog-
nostic performance and association with gene expression in lung
and head-and-neck cancer data sets. First, we defined 440
quantitative image features describing tumour phenotype char-
acteristics by: (I) tumour image intensity, (II) shape, (III) texture
and (IV) multiscale wavelet (Fig. 1b, Supplementary Methods).

To investigate radiomic expression patterns we extracted
radiomic features from the Lung1 data set, consisting of 422
non-small cell lung cancer (NSCLC) patients (Fig. 2). Unsuper-
vised clustering revealed clusters of patients with similar radiomic
expression patterns (Fig. 3). We compared the three main
clusters of patients with clinical parameters (Fig. 3b), and found
significant association with primary tumour stage (T-stage;
Po1� 10� 20, w2 test) and overall stage (P¼ 3.4� 10� 3,
w2 test), wherein cluster I was associated with lower stages.
N-stage (lymph node) and M-stage (metastasis), however,
showed no correspondence with the radiomic expression patterns
(P¼ 0.46 and P¼ 0.73, respectively, w2 test).

Furthermore, a significant association with histology (P¼ 0.019,
w2 test) was observed, wherein squamous cell carcinoma showed a
higher presence in cluster II. Looking at the representation of the
feature groups (Fig. 3c), there was no correspondence between the
feature group and radiomic expression patterns.

Prognostic value of radiomic data. The possible association of
radiomic features with survival was then explored by Kaplan–
Meier survival analysis. For training we used the Lung1 data set,
and for validation the Lung2, H&N1, H&N2 data sets (Fig. 2).
The radiomic features were not normalized on any data set, and
only the raw values were used that were directly computed from
the DICOM images.

To ensure a completely independent validation, the median
value of each feature was computed on the training Lung1 data
set, and locked for use as a threshold in the validation data sets to
assess the survival differences without retraining. In
Supplementary Fig. 1 we show Kaplan–Meier survival curves
for four representative features. Features describing heterogeneity
in the primary tumour were associated with worse survival in all
four data sets. Also, patients with more compact/spherical
tumours had better survival probability.

Overall, the median threshold derived from Lung1 yielded a
significant survival difference for 238 features (54% of total 440;
G-rho test, false discovery rate (FDR) 10%) in the Lung2
validation data set. Furthermore, there was a significant survival
difference for 135 features (31%) in H&N1 and for 186 features in
H&N2 (42%). Sixty-six (15%) of the features derived from Lung1
were significant for survival in all three validation data sets
(Lung2, H&N1 and H&N2).

Building prognostic radiomic signature. To build a prognostic
radiomic signature, the analysis was divided in training and vali-
dation phases (Fig. 2). For the training phase, we first explored
feature stability determined in both test-retest and inter-observer
setting. Using the publicly available RIDER10 data set, consisting
of 31 sets of test-retest CT scans that were acquired approximately
15 min apart, we tested how consistent the radiomic features were
between the test and the retest scan. The multiple delineation data
set, where five oncologists delineated lesions on CT scans from 21
patients11, was used to test the stability of the radiomic features to
variation in manual delineations.
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Figure 2 | Analysis workflow. The defined radiomic features algorithms were applied to seven different data sets. Two data sets were used to calculate the

feature stability ranks, RIDER test/retest and multiple delineation respectively (both orange). The Lung1 data set, containing data of 422 non-small

cell lung cancer (NSCLC) patients, was used as training data set. Lung2 (n¼ 225), H&N1 (n¼ 136) and H&N2 (n¼ 95) were used as validation data sets.

The Lung3 data set (n¼ 89) was used for association of the radiomic signature with gene expression profiles. For the multivariate analysis, only

one fixed four-feature radiomic signature was tested in the validation data sets.
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For each feature, we compared the stability ranks for test-retest
and multiple delineation with prognosis in the Lung1 training
data set. Although the stability ranks did not use any information
about prognosis, in general, features with higher stability for test-
retest and delineation inaccuracies showed higher prognostic
performance (Supplementary Fig. 2). This is possibly due to
reduced amount of noise in the stable features and supports the
use of stability ranks for feature selection.

To test the multivariate performance of a radiomic signature,
we used the workflow depicted in Fig. 2 and Supplementary Fig. 3.
We focused our analysis on the 100 most stable features, which
were determined by averaging the stability ranks of RIDER data
set and multiple delineation data set. To remove redundancy
within the radiomic information, we selected the single best
performing radiomic feature from each of the four-feature groups,
and combined these top four features into a multivariate Cox
proportional hazards regression model for prediction of survival.

The resulting radiomic signature consisted of (I) ‘Statistics
Energy’ (Supplementary Methods Feature 1) describing the
overall density of the tumour volume, (II) ‘Shape Compactness’
(Feature 16) quantifying how compact the tumour shape is, (III)
‘Grey Level Nonuniformity’ (Feature 48) a measure for
intratumour heterogeneity and (IV) wavelet ‘Grey Level

Nonuniformity HLH’ (Feature Group 4), also describing
intratumour heterogeneity after decomposing the image in mid-
frequencies. The weights of each of the features in the signature
were fitted on the training data set Lung1.

Prognostic validation of radiomic signature. The performance
of the four-feature radiomic signature was validated in the data
sets Lung2, H&N1 and H&N2 (Fig. 2) using the concordance
index (CI), which is a generalization of the area under the ROC
curve12. The radiomic signature had good performance on the
Lung2 data (CI¼ 0.65, P¼ 2.91� 10� 09, Wilcoxon test), and a
high performance in H&N1 (CI¼ 0.69, P¼ 7.99� 10� 07,
Wilcoxon test) and H&N2 (CI¼ 0.69, P¼ 3.53� 10� 06,
Wilcoxon test). In Fig. 4a the Kaplan–Meier curves are shown.

Although volume had a good performance in all data sets, the
radiomic signature performed significantly better, suggesting that
radiomic features contain relevant, complementary information
for prognosis (Supplementary Table 1). Furthermore, combining
the radiomic signature with volume was significantly better than
volume alone in all data sets.

Comparing the radiomic signature with the TNM staging13, we
see that the signature performance was better in both Lung2 and
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Figure 3 | Radiomics heat map. (a) Unsupervised clustering of lung cancer patients (Lung1 set, n¼422) on the y axis and radiomic feature

expression (n¼440) on the x axis, revealed clusters of patients with similar radiomic expression patterns. (b) Clinical patient parameters for showing

significant association of the radiomic expression patterns with primary tumour stage (T-stage; Po1� 10� 20, w2 test), overall stage (P¼ 3.4� 10� 3,
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Figure 4 | Prognostic performance and gene-expression association of the radiomics signature. (a) Radiomic signature performance. Kaplan–Meier

curves demonstrating performance of the radiomic signature on the lung cancer data sets (left) and the head-and-neck cancer data sets (right). The

signature was built on the Lung1 data (n¼422). The signature had a good performance in the Lung2 (CI¼0.65, P¼ 2.91� 10�09, Wilcoxon test, n¼ 225),

and a high performance in H&N1 (CI¼0.69, P¼ 7.99� 10�07, Wilcoxon test, n¼ 136) and H&N2 (CI¼0.69, P¼ 3.53� 10�06, Wilcoxon test,

n¼ 95) validation data sets. (b) Association of radiomic signature features and gene expression using gene-set enrichment analysis (GSEA) in the Lung3

data set (n¼ 89). Gene sets that have been significantly enriched (FDR¼ 20%) for at least one of the four radiomic features are indicated with an

asterisk. The corresponding normalized enrichment scores (NES), GSEA’s primary statistic, for all radiomic signature features is displayed in a heat map,

where light blue means low and dark blue means high NES.
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H&N2 and comparable in H&N1 (Supplementary Table 1).
Importantly, combining the radiomic signature with TNM
staging showed a significant improvement in all data sets,
compared with TNM staging alone. Furthermore, we assessed if
the radiomics signature preserved the significant prognostic
performance compared with the treatment that the patients
received. We found that the signature preserved its prognostic
performance for all the treatment groups (radiation or concurrent
chemoradiation), for both Lung and H&N cancer patients
(Supplementary Table 2), demonstrating the complementary
value of radiomics for each treatment type.

Human papillomavirus (HPV) is an important determinant in
head-and-neck cancer patients, especially those with orophar-
yngeal carcinoma for prognosis and may guide future treatment
selection. We did not find a significant association between
radiomic signature prediction and HPV status in a combined
analysis in the H&N1 and H&N2 data set (P¼ 0.17, Wilcoxon
test, Supplementary Table 3). However, we found that the
signature preserved its prognostic performance in the HPV-
negative group (CI¼ 0.66), consisting of the majority of patients
(76%, n¼ 130), demonstrating the complementary value of
radiomics to HPV screening.

To assess the association between the radiomic signature and
the underlying biology, we compared the radiomic signature
with gene-expression profiles (Lung3 data set, Fig. 2) using gene-
set enrichment analysis (GSEA)1,14. We found significant
associations between the signature features and gene-expression
patterns (Fig. 4b). Further, the radiomic features are significantly
associated with different biologic gene sets, demonstrating that
radiomic features probe different biologic mechanisms. It is
noteworthy that both intratumour heterogeneity features in the
signature (Feature III and IV) were strongly correlated with cell
cycling pathways, indicating an increased proliferation for more
heterogeneous tumours.

Discussion
Medical imaging is one of the major factors informing medical
science and treatment. Its potential resides in its ability to assess
the characteristics of human tissue noninvasively, and therefore is
routinely used in clinical practice for oncologic diagnosis and
treatment guidance and monitoring.

However, traditionally, medical imaging has been a subjective
or qualitative science. Recent advances in medical imaging
acquisition and analysis allow the high-throughput extraction of
informative imaging features to quantify the differences that
oncologic tissues exhibit in medical imaging.

Radiomics applies advanced computational methodologies to
medical imaging data to convert medical images into quantitative
descriptors of oncologic tissues8.

In this study, we analysed 440 radiomic features quantifying
tumour phenotypic differences based on its image intensity, shape
and texture. In a large data set of 1,019 lung and head-and-neck
cancer patients, of which we extracted radiomic features on
computed tomography images, we found that a large number of
radiomic features have prognostic power, many of which their
prognostic implication have not been described before. Further-
more, our integrated analysis showed that features selected on the
basis of their stability and reproducibility were also the most
informative features, which indicates the power of integrating
independent data sets for radiomic feature selection and model
building.

We showed as well that a radiomic signature, capturing
intratumour heterogeneity, was strongly prognostic and validated
in three independent data sets of lung and head-and-neck cancer
patients, and was associated with gene-expression profiles. To

avoid any form of over-fitting or bias, we performed a robust
statistical validation: only one radiomics signature (containing four
radiomic features) was validated in data of 545 patients in
independent validation data sets (Fig. 2 and Supplementary Fig. 3).
The four features were selected on the basis of feature stability and
prognostic performance in the discovery data set only.

The top performing feature ‘Grey Level Nonuniformity’ (Feature
48) and the most dominant features in the radiomic signature
(Features III and IV), quantified intratumour heterogeneity. Indeed,
it is often hypothesized that intratumour heterogeneity is exhibited
on different spatial scales, for example at the radiological,
macroscopic, cellular and the molecular (genetics) level. Radi-
ological tumour phenotype characteristics may thus be useful to
investigate the underlying evolving biology. It is known that
multiple subclonal populations coexist within tumours, reflecting
extensive intratumoral ‘somatic evolution’15,16. This heterogeneity is
a clear barrier to the goal of personalized therapy based on
molecular biopsy-based assays, as the identified mutations and
gene-expression does not always represent the entire population of
tumour cells17,18. Radiomics circumvents this by assessing the
comprehensive three-dimensional tumour bulk. The study
presented here probes heterogeneity and demonstrates
corresponding clinical importance in two cancer types.
Furthermore, we demonstrated association of intratumour
heterogeneity with proliferation, a general hallmark of cancer.

Overall, the lung-derived radiomic signature had better
performance in head and neck compared with lung cancer. One
reason could be that head-and-neck images were acquired with
head immobilization, whereas lung images were acquired with
free breathing and are affected by patient movement or
respiration, resulting in relatively more image noise. Nonetheless,
our results show that the radiomic signature could be transferred
from lung to head-and-neck cancer, which suggests that the
signature identifies a general prognostic tumour phenotype.

Our method provides a noninvasive (and therefore with no risk
of infection or complications that accompany tissue biopsies),
fast, low cost and repeatable way of investigating phenotypic
information, potentially speeding up the development of
personalized medicine. Furthermore, we show that the radiomic
signature is significantly associated with the underlying gene-
expression patterns, suggesting that inter-patient differences of
gene expression are larger than intra-patient differences.

The clinical impact of our results are illustrated by the fact that
it advances knowledge in the analysis and characterization of
tumours in medical images, previously not done, and provides
knowledge currently not used in the clinic. We showed the
complementary performance of radiomic features with TNM
staging for prediction of outcome, which illustrates the clinical
importance of our findings as TNM is routinely used in the clinic.
Currently, the TNM staging system is used for risk stratification
and treatment decision making. However, the TNM staging
system is primarily based on resectability of the tumour, whereas
a larger number of NSCLC patients will receive primary
treatment with radiotherapy either alone or combined with
chemotherapy. Therefore, the TNM staging system is insufficient
for risk stratification of this group of patients, in particular to
make the decision between curative treatment (concomitant
radiochemotherapy) or palliative treatment especially in elderly
patients, a growing issue in western countries. Our results show
that the radiomics signature is performing better in independent
cohorts than the TNM classification. In future clinical trials, this
inexpensive method can be used as well for pretreatment risk
stratification (for example, high, low risk).

Furthermore, we have shown for the first time the translational
capability of radiomics in two cancer types (lung and head-and-
neck cancer). These results indicate that radiomics quantifies a
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general prognostic cancer phenotype that likely can broadly be
applied to other cancer types. Similar observations have been
made in gene-expression studies where signatures are prognostic
across different diseases19.

Analysis of image features applied to medical imaging has been
a largely studied field and extensive literature exists. However, the
majority of previous work describes the use of imaging features
focused in the detection of small nodules in, for example,
mammograms or chest CT/positron emission tomography (PET)
scans, or in the differential diagnosis of malignant versus benign
nodules (computed-aided diagnostics). However, applications
and methodologies are distinct from our study. Quantitative
imaging for personalized medicine is a recent field, with a limited
number of publications12,20–27. The main clinical question of this
research is not the diagnosis, but how to extract more useful
information from the tumour phenotype that can be used for
personalized medicine. Therefore, we assessed the association of
radiomics with clinical factors, prognosis and gene-expression
levels, using large amounts of features and with external and
independent validation cohorts of patients. The most important
message in our study is that there is prognostic and biologic
information enclosed in routinely acquired CT imaging and was
evident in two cancer types.

It is known that variability in image acquisition exists across
hospitals and that this is a reality in clinical practice. However, in
our analysis we used data directly generated from the scanner and
the features were calculated from the RAW imaging data, without
any pre-processing or normalization. As there was no correction
by cohort or scanner type, this illustrates the translational
potential of our results and it is a strong argument in favour of a
multicentric application of radiomics. The radiomics signature
had strong prognostic power in these independent data sets
generated in daily clinical practice. Furthermore, we expect that
with better standardization and imaging protocols, the power of
radiomics will even further improve. Among others, the
quantitative imaging network of the National Institute of Health,
as well as the quantitative imaging biomarker alliance, investi-
gates future directions by performing phantom studies and
discussing with vendor’s open and standardized protocols for
image acquisition2,3.

Due to the large availability of noninvasive imaging performed
routinely in a large number of cancer patients and the automated
feature algorithms, the results of this work could stimulate further
research of image-based quantitative features. Also, we presented
evidence that the defined radiomic feature-metrics are platform
independent, though this should be studied further, and can
potentially be applied to other image modalities, such as magnetic
resonance imaging or PET. This approach can have a large
impact as imaging is routinely used in clinical practice, world-
wide, in all stages of diagnoses and treatment, providing an
unprecedented opportunity to improve medical decision-support.

Methods
Radiomics features. We defined 440 radiomic image features that describe tumour
characteristics and can be extracted in an automated way. The features can be
divided into four groups: (I) tumour intensity, (II) shape, (III) texture and (IV)
wavelet features. The first group quantified tumour intensity characteristics using
first-order statistics, calculated from the histogram of all tumour voxel intensity
values. Group 2 consists of features based on the shape of the tumour (for example,
sphericity or compactness of the tumour). Group 3 consists of textual features that
are able to quantify intratumour heterogeneity differences in the texture that is
observable within the tumour volume. These features are calculated in all three-
dimensional directions within the tumour volume, thereby taking the spatial location
of each voxel compared with the surrounding voxels into account. Group 4 calcu-
lates the intensity and textural features from wavelet decompositions of the original
image, thereby focusing the features on different frequency ranges within the tumour
volume (Supplementary Fig. 4). All feature algorithms were implemented in Matlab.
In the Supplementary Methods, the feature algorithms are described.

Data sets. We applied a radiomic analysis to seven image data sets. An overview
of the data sets is presented in Fig. 2. All research was carried out in accordance
with Dutch law. The Institutional Review Boards of each of the participating
centres approved the studies: Lung1, Lung3, H&N1 (Maastricht University Medical
Center (MUMCþ ), Maastricht, The Netherlands), Lung2 (Radboud University
Medical Center (RUMC), Nijmegen, The Netherlands) and H&N2 (VU University
Medical Center (VUMC), Amsterdam, The Netherlands). The Multiple delineation
data set is publicly available (downloaded from: www.cancerdata.org). This study
was conducted according to national laws and guidelines and approved by the
appropriate local trial committee at Maastricht University Medical Center
(MUMC1), Maastricht, The Netherlands.

� The RIDER data set consists of 31 NSCLC patients with two CT scans acquired
approximately 15 min apart10. We used this data set to assess stability of the
features for test-retest.

� The multiple delineation data set consists of 21 NSCLC patients where the
tumour volume was delineated manually on CT/PET scans by five independent
oncologists11. We used this data set to assess stability of the features for
delineation inaccuracies.

� The Lung1 data set consists of 422 NSCLC patients that were treated at
MAASTRO Clinic, The Netherlands. For these patients, CT scans, manual
delineations, clinical and survival data were available. We used this data set to
assess the prognostic value of the radiomic features and to build a radiomic
signature.

� The Lung2 data set consists of 225 NSCLC patients that were treated at Radboud
University Nijmegen Medical Centre, The Netherlands. For these patients, CT
scans, manual delineations, clinical and survival data were available. We used
this data set to validate the prognostic value of the radiomic features and
signature in an independent NSCLC cohort.

� The H&N1 data set consists of 136 head-and-neck squamous cell carcinoma
(HNSCC) patients treated at MAASTRO Clinic, The Netherlands. For these
patients, CT scans, manual delineations, clinical and survival data were available.
We used this data set to validate the prognostic value of the radiomic features
and signature in HNSCC patients.

� The H&N2 data set consists of 95 HNSCC patients treated at the VU University
Medical Center Amsterdam, The Netherlands. For these patients, CT scans,
manual delineations, clinical and survival data were available. We used this data
set to validate the prognostic value of the radiomic features and signature in a
second cohort of HNSCC patients.

� The Lung3 data set consists of 89 NSCLC patients that were treated at
MAASTRO Clinic, The Netherlands. For these patients pretreatment CT scans,
tumour delineations and gene expression profiles were available. We used this
data set to associate imaging features with gene-expression profiles.

In the Supplementary Methods and Supplementary Tables 4–7, further
descriptions of the data sets are presented. The discovery Lung1 data set, consisting
of CT images for 422 NSCLC patients, and the Lung3 data set consisting of CT
images and gene-expression profiling for 89 NSCLC patients, are publicly available
at The Cancer Imaging Archive, Lung1: https://wiki.cancerimagingarchive.net/
display/Public/NSCLC-Radiomics and Lung3: https://wiki.cancerimagingarchive.
net/display/Public/NSCLC-Radiomics-Genomics, as well as on www.cancerdata.org.

Sample size. To reduce any form of over-fitting or bias in the multivariate ana-
lysis, we trained on data the Lung1 data sets (n¼ 422), selecting the features and
fixing the weights, and tested only one signature (containing four features) in data
of 545 patients in the independent validation data sets. There was no need for
randomization as the patients originated from distinct groups. Patients were
included in the analysis with the following criteria: confirmed primary tumour,
patients underwent treatment with curative intent. Excluded from this analysis
were patients receiving no or palliative treatment and patients with previous lung
or head-and-neck cancer.

Data analysis. An overview of the analysis is shown in Fig. 2. The analysis was
divided in training and validation phases. For the training phase, we first explored
feature stability determined in both test-retest and inter-observer setting. The
RIDER and multiple delineation data sets were used to assess stability of the
features to select the most informative features for further investigation. Using the
RIDER test-retest data set, we tested the stability of the radiomic features between
test and retest10. For each patient, we extracted the radiomic features from both
scans. A stability rank was calculated for each feature, using the intraclass
correlation coefficient, where a higher intraclass correlation coefficient rank
corresponds to a more stable feature.

We assessed the feature stability for delineation inaccuracies using a multiple
delineation data set11. All radiomic features were computed for five delineations
per patient, and a stability rank per feature was calculated using the Friedman test.
The Friedman test is a nonparametric repeated measurement test for a non-
Gaussian population. A rank of 1 indicated the most stable feature for delineation
inaccuracies and 440 the least stable feature. All 440 radiomic features were
extracted for the Lung1, Lung2, H&N1 and H&N2 data sets. The radiomic features
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were not normalized on any data set, and only the raw values were used that were
directly computed from the DICOM image. To explore the association of the
radiomics features with survival, we used Kaplan–Meier analysis in a training and
validation phase. To ensure a completely independent validation, the median
threshold of each feature on the Lung1 data set was computed, and then this
threshold was used in the validation data sets (Lung2, H&N1 and H&N2) to split
the survival curves. We used the G-rho rank test for censored survival data to test
for significant differences between the two survival curves. P-values were corrected
for multiple testing by controlling the FDR of 10%, the expected proportion of false
discoveries amongst the rejected hypotheses.

To assess the multivariate performance of radiomic features we built a signature.
We selected the 100 most stable features, determined by averaging the stability ranks
of RIDER data set and multiple delineation data set. Next, we computed the
performance in the Lung 1 data set of each of the selected 100 features using the
concordance index (CI)12. This measure is comparable with the area under the curve
but can also be used for Cox regression analysis. From each of the four-feature groups,
we selected the single best performing feature for prognosis in the Lung1 data set, and
combined these top four features into a multivariate Cox proportional hazards
regression model for prediction of survival. The weights of the model were fitted on
the Lung1 data set. We applied the radiomic signature to the validation data sets
Lung2, H&N1 and H&N2, and the performance was assessed with the CI. To
calculate significance between two models we used a bootstrap approach, for 100
times we calculated the CI of both models from 100 randomly selected samples. The
Wilcoxon test was used to assess significance.

A similar approach was used to assess if the signature had significant power,
compared with random (CI¼ 0.5). We used a bootstrap approach, for 100 times we
calculated the CI of the radiomics signature based on 100 randomly selected
samples with correct outcome data, as well as on 100 randomly chosen samples
with random outcome data. The Wilcoxon test was used to assess significance,
between the two distributions.

To assess the complementary effect of the signature with clinical parameters, we
built a new model with the prediction of the signature as one input and the clinical
parameter as the other input. The weight of the clinical parameter was fitted on the
training data set Lung1.

To assess the association of the radiomic signature with gene expression, we
used the Lung3 data set. Gene expression of 89 patients was measured on
Affymetrix chips with the custom chipset HuRSTA_2a520709 for 21,766 genes.
Expression values were normalized with the RMA algorithm5 in the Affy package
in Bioconductor. For each of the four features in the radiomic signature, we
calculated the Spearman rank correlation to gene expression and used the
corresponding P-values to obtain a rank of genes representing high-to-low
agreement. Each of these gene ranks were used to perform a pre-ranked version of
GSEA14 on the C5 collection of MSigDB28, which contains gene sets associated
with specific GO terms. We only regarded gene sets of size 15 to 500. Local FDRs
were calculated on the normalized enrichment scores (NES), primary statistic of
GSEA and only gene sets enriched with an FDR of r20% were retained. Figure 4b
displays gene sets that have been significantly enriched (FDR r20%) for at least
one of four radiomic features (indicated by an asterisk). The corresponding
absolute NES in all of the four features are given color-coded, where light blue
means low and dark blue means high NES.
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